Skip to main content

There is a revolution coming and it rides on batteries; Electric mobility!

In recent years the global energy crisis has seen a transition to alternative energy and energy for sustainable development. Many countries in the world including United States, Japan and countries in the EU have resolved to have clean, renewable energy for energy resources. This includes transitioning to sustainable modes of transportation to further reduce carbon emissions. A global transition to sustainable transport is inevitable. Africa is also gaining momentum in this space, in Kenya alone, there are approximately forty electric mobility startups working towards this transition. 

The three main components of electric mobility can be summarised as; the vehicle, the battery, the charger. 


The vehicle:

There are two main types of electric vehicles (EVs); the hybrid and the fully electric vehicles. The fully electric vehicles can be dived into 2 & 3 wheelers and 4 wheelers. The unifying factor for all these types of electric vehicles is that they all run on one or more electric motors. Electric cars function by plugging into a charge point and taking electricity from the grid. They store the electricity in rechargeable batteries that power an electric motor, which turns the wheels. Electric cars accelerate faster than vehicles with traditional fuel engines so they feel lighter to drive. Electric vehicles have low running costs as they have fewer moving parts for maintaining. 

The battery:

There are different types of energy storage systems used in EV technology. The lithium-ion battery, the nickel-metal hydride, lead-acid, and ultracapacitors. You can read more about the differences here.

It is worth noting that one concept for EVs is to have the battery pack itself be readily removable and “swappable.” This allows for extended driving range through the use of battery swap stations and an arrangement for consumers to lease rather than own their batteries. Systems have been demonstrated that can accomplish the battery swap very rapidly, in around 1 min for the battery pack swap itself and a few minutes for the complete operation.

Battery recycling is an important component of improving sustainability in E-mobility. Widespread battery recycling would keep hazardous materials from entering the waste stream both at the end of the battery’s useful life and during its production. In Kenya Waste Electrical and Electronic Equipment Centre (WEEE Centre) offers the services of awareness creation (training) and safe disposal of electrical and electronic waste (e-Waste); in accordance with NEMA waste regulations and WEEE regulations that are protective to both the environment and public health.

Charging:

Charging electric vehicles has an immense impact on the grid. As more and more electric vehicles into the social production and living, the demand for electrical energy will affect the existing power grid city planning system, thereby affecting the planning and development of electric vehicle charging systems. Construction planning, building capacity and other electric vehicle charging station is mainly affected by the following factors; electric vehicle overall ownership, electric vehicle user habits and mode of operation, battery characteristic and planning of charging stations. Using stand-alone mini-grids or a hybrid of renewable energy and grid connection could further help to reduce the overall impact charging electric vehicles has on the grid.

Benefits of electric vehicles

The benefits of electric mobility can be categorized as environmental, economical and technological.

One of the main environmental benefits of electric mobility is that it improves the lives of people by not emitting toxic gases, this causes improved air quality through the reduction of hydrocarbons. As electric vehicles do not have combustion engines, they avoid the emissions of tonnes of greenhouse gases which in turn helps to fight the effects of climate change. E-Mobility dramatically reduces air noise pollution in areas such as engines, tyres and wind passage noise.

The economic benefits are seen in electric mobility’s contribution to economic growth. This is due to the lower consumer cost. Vehicle purchase, charging infrastructure, maintenance and cost of charging are much lower than the current cost of internal combustion engines vehicles.

Electric mobility technology is constantly evolving making it increasingly efficient and creating new applications in larger vehicles such as lorries, aircrafts and boats. This encourages manufacturer innovation and use of smart power grids that improves the efficiency of electricity delivery in general.

It is a fun new time to consider going electric for your next vehicle, tuk-tuk or motorbike purchase, it offers more economic and environmental benefits. 

Image courtesy of: sciencedirect.com

 

Comments

Popular posts from this blog

Step-by-step design of a Solar PV System

The recently concluded Micro Grid Academy (MGA) training saw over seventy energy experts across the African continent trained on decentralised renewables against Covid-Operation and Maintenance. One of the most impactful take-homes for me was:   “ Design is not about the deliverables; design is a way of thinking”   In this post, I will break down the steps required in designing a solar photovoltaic (PV) system.   Solar photovoltaic system or Solar power system is one of renewable energy system which uses PV modules to convert sunlight into electricity. The electricity generated can be either stored or used directly, fed back into grid line or combined with one or more other electricity generators or more renewable energy source. Solar PV system is very reliable and clean source of electricity that can suit a wide range of applications such as residence, industry, agriculture, livestock, etc. If you are still reading at this point, I just want to reiterate just how much I miss creative

Personal Statement Checklist for University Applications

It can get quite overwhelming making an application for a postgraduate degree. Besides the CV, transcripts and recommendation letters, you will require a personal statement. What I’ve learned is that a personal statement is an invitation for the selection committee to get to know who you are and what your goals are. Using a personal checklist could help to keep track of all the information you want to convey without leaving any important information out.    Here are some of my thoughts on what a good personal statement checklist should entail. Feel free to add on, your experience could genuinely be of help to someone who needs it.   1.       Why do you want to pursue a Masters degree? Introduce yourself, education and professional background, your career goals and Indicate the benefits of the course to your career at the moment and prospective future.   2.       Reasons for this particular university? Flatter them, indicate clearly why you believe the particular university suits you an

Challenges and Mitigation strategies in renewable energy evacuation in Kenya

Kenya seeks to improve the livelihood of its citizens and empower them economically and socially. In doing so, a development agenda encompassing the Vision 2030 and the Big 4 Agenda were developed with a main focus on achieving sustainable development goals.    The Big 4 Agenda items include Manufacturing, Affordable Health Care, Food Security & Affordable Housing. In order to achieve these goals, the Energy Sector and Ketraco in particular will need to ensure access to affordable, reliable, sustainable and clean energy. The following are the key objectives in enabling the Big 4 national development objectives: 1.     Increase electricity generation capacity from cheaper, sustainable and reliable energy sources –  lower cost of power  (To cost about 9 US cents for industries and 10 US cents for domestic tariff by 2022) 2.     Expand and upgrade the transmission and distribution network infrastructure  –  reduce power loss, lower cost of power, increased revenue generation, stable p